Important Quant Questions with solution

CMAT Exam Date: March 2023 (Tentative)

Important Quant Questions with solution

Lavleen kaur kapoor

I hope you enjoy reading this Article. If you want me and my team to help you with your MBA College Selection and "Get Unbiased Advice", Connect with us on WhatsApp . - Lavleen Kaur Kapoor

MBA aspirants who are appearing in forthcoming CMAT which will be held in January 2022 may find following Quant questions useful for practice: 

Question 

The equation 2x2 + 2(p + 1) x + p = 0, where p is real, always has roots that are
 
(1)Equal
(2)Equal in magnitude but opposite in sign
(3)Irrational
(4)Real
(5)Complex Conjugates
 
Answer
 
Correct Choice - (4). Correct Answer is - The Roots are Real
 
Explanatory Answer
 
The value of the discriminant of a quadratic equation will determine the nature of the roots of a quadratic equation. 
 
The discriminant of a quadratic equation ax2 + bx + c = 0 is given by b2 - 4ac.
 
•If the value of the discriminant is positive, i.e. greater than '0', then the roots of the quadratic equation will be real.
•If the value of the discriminant is '0', then the roots of the quadratic equation will be real and equal.
•If the value of the discriminant is negative, i.e. lesser than '0', then the roots of the quadratic equation will be imaginary. The two roots will be complex conjugates of the form p + iq and p - iq.
 
Using this basic information, we can solve this problem as shown below.
In this question, a = 2, b = 2(p + 1) and c = p
Therefore, the disciminant will be (2(p + 1))2 - 4*2*p = 4(p + 1)2 - 8p
= 4[(p + 1)2 - 2p]
= 4[(p2 + 2p + 1) - 2p]
= 4(p2 + 1)
 
For any real value of p, 4(p2 + 1) will always be positive as p2 cannot be negative for real p.
Hence, the discriminant b2 - 4ac will always be positive.
 
When the discriminant is greater than '0' or is positive, the roots of a quadratic equation will be real.
 
Therefore, the answer choice is 4.
 
 
 

Related Articles